LM101-077: How to Choose the Best Model using BIC 69b5t

02/05/2019

In this 77th episode of www.learningmachines101.com , we explain the proper semantic...

In this 77th episode of www.learningmachines101.com , we explain the proper semantic interpretation of the Bayesian Information Criterion (BIC) and emphasize how this semantic interpretation is fundamentally different from AIC (Akaike Information Criterion) model selection methods. Briefly, BIC is used to estimate the probability of the training data given the probability model, while AIC is used to estimate out-of-sample prediction error. The probability of the training data given the model is called the “marginal likelihood”.  Using the marginal likelihood, one can calculate the probability of a model given the training data and then use this analysis to selecting the most probable model, selecting a model that minimizes expected risk, and Bayesian model averaging. The assumptions which are required for BIC to be a valid approximation for the probability of the training data given the probability model are also discussed.

LM101-078: Ch0: How to Become a Machine Learning Expert +1 año 39:17 LM101-079: Ch1: How to View Learning as Risk Minimization +1 año 26:06 LM101-079: Ch1: How to View Learning as Risk Minimization +1 año 26:06 LM101-080: Ch2: How to Represent Knowledge using Set Theory +1 año 31:42 LM101-081: Ch3: How to Define Machine Learning (or at Least Try) +1 año 37:19 Ver más en APP Comentarios del episodio 272j37